Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474971

RESUMO

This study explored the effects of a modular overground exoskeleton on plantar pressure distribution in healthy individuals and individuals with Acquired Brain Injury (ABI). The research involved 21 participants, including ABI patients and healthy controls, who used a unique exoskeleton with adaptable modular configurations. The primary objective was to assess how these configurations, along with factors such as muscle strength and spasticity, influenced plantar pressure distribution. The results revealed significant differences in plantar pressures among participants, strongly influenced by the exoskeleton's modularity. Notably, significant distinctions were found between ABI patients and healthy individuals. Configurations with two modules led to increased pressure in the heel and central metatarsus regions, whereas configurations with four modules exhibited higher pressures in the metatarsus and hallux regions. Future research should focus on refining and customizing rehabilitation technologies to meet the diverse needs of ABI patients, enhancing their potential for functional recovery.


Assuntos
Exoesqueleto Energizado , Ossos do Metatarso , Humanos , Calcanhar , Nível de Saúde
2.
JMIR Serious Games ; 12: e39286, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180843

RESUMO

Background: New interventions based on motor learning principles and neural plasticity have been tested among patients with ataxia and hemiparesis. Therapies of pedaling exercises have also shown their potential to induce improvements in muscle activity, strength, and balance. Virtual reality (VR) has been demonstrated as an effective tool for improving the adherence to physical therapy, but it is still undetermined if it promotes greater improvements than conventional therapy. Objective: Our objective was to compare the effect on lower limb range of motion (ROM) when using VR technology for cycling exercise versus not using VR technology. Methods: A randomized controlled trial with 20 patients with ataxia and hemiparesis was carried out. The participants were divided into 2 groups: the experimental group (n=10, 50%) performed pedaling exercises using the VR system and the control group (n=10, 50%) performed pedaling exercises without using VR. Measurements of the active and passive ROM of the hip and knee joint were taken before and after a cycling intervention, which consisted of 3 sessions of the same duration but with progressively increasing speeds (4, 5, and 6 km/h). Repeated measures ANOVAs were conducted to compare the preintervention (Ti) and postintervention (Te) assessments within each group. Additionally, the improvement effect of using the VR system was analyzed by comparing the variation coefficient (Δ = 1 - [Te / Ti]) between the preintervention and postintervention assessments for each group. Group comparisons were made using independent 1-tailed t tests. Results: Significant improvements were shown in active left hip flexion (P=.03) over time, but there was no group-time interaction effect (P=.67). Passive left hip flexion (P=.93) did not show significant improvements, and similar results were observed for active and passive right hip flexion (P=.39 and P=.83, respectively). Neither assessments of knee flexion (active left: P=.06; passive left: P=.76; active right: P=.34; passive right: P=.06) nor knee extension showed significant changes (active left: P=.66; passive left: P=.92; active right: P=.12; passive right: P=.38). However, passive right knee extension (P=.04) showed a significant improvement over time. Overall, although active and passive ROM of the knee and hip joints showed a general improvement, no statistically significant differences were found between the groups. Conclusions: In this study, participants who underwent the cycling intervention using the VR system showed similar improvement in lower limb ROM to the participants who underwent conventional training. Ultimately, the VR system can be used to engage participants in physical activity.

3.
Sensors (Basel) ; 24(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203060

RESUMO

In recent years, the prevalence of acquired brain injury (ABI) has been on the rise, leading to impaired gait functionality in affected individuals. Traditional gait exoskeletons are typically rigid and bilateral and lack adaptability. To address this, the STELO, a pioneering modular gait-assistive device, was developed. This device can be externally configured with joint modules to cater to the diverse impairments of each patient, aiming to enhance adaptability and efficiency. This study aims to assess the safety and usability of the initial functional modular prototype, STELO, in a sample of 14 ABI-diagnosed participants. Adverse events, device adjustment assistance and time, and gait performance were evaluated during three sessions of device use. The results revealed that STELO was safe, with no serious adverse events reported. The need for assistance and time required for device adjustment decreased progressively over the sessions. Although there was no significant improvement in walking speed observed after three sessions of using STELO, participants and therapists reported satisfactory levels of comfort and usability in questionnaires. Overall, this study demonstrates that the STELO modular device offers a safe and adaptable solution for individuals with ABI, with positive user and therapist feedback.


Assuntos
Lesões Encefálicas , Procedimentos Cirúrgicos Robóticos , Tecnologia Assistiva , Humanos , Marcha , Velocidade de Caminhada
4.
Artigo em Inglês | MEDLINE | ID: mdl-36231604

RESUMO

(1) Background: Introducing ultrasound-guided dry needling to neurorehabilitation treatments increases the beneficial effects of therapy. The aim of this study was to compare the effects of including an ultrasound-guided dry needling session in neurorehabilitation treatment on spasticity and gait-balance quality versus neurorehabilitation treatment in subjects who had suffered a stroke. (2) Methods: A single-blind, randomized clinical trial was conducted. Thirty-six patients who had suffered a stroke in the right middle cerebral artery signed the informed consent for participation in the study. Twenty patients finally participated and were randomly assigned to the control group (neurorehabilitation treatment) or experimental group (neurorehabilitation treatment plus ultrasound-guided dry needling). Pre-treatment and post-treatment data were collected on the same day. The experimental group (n = 10) first underwent an ultrasound-guided dry needling intervention on the tibialis anterior and tibialis posterior musculature, followed by neurorehabilitation treatment; the control group (n = 10) underwent their corresponding neurorehabilitation without the invasive technique. Pre-treatment and post-treatment measurements were taken on the same day, assessing the quality of balance-gait using the "Up and Go" test and the degree of spasticity using the Modified Modified Ashworth Scale. (3) Results: The patients who received neurorehabilitation treatment plus ultrasound-guided dry needling showed a greater decrease in spasticity in the tibial musculature after the neurorehabilitation treatment session (p < 0.001), improving balance and gait (p < 0.001). (4) Conclusions: An ultrasound-guided dry needling session combined with neurorehabilitation treatment reduced spasticity and improved balance and gait in stroke patients.


Assuntos
Agulhamento Seco , Reabilitação Neurológica , Acidente Vascular Cerebral , Humanos , Espasticidade Muscular/etiologia , Espasticidade Muscular/terapia , Método Simples-Cego , Acidente Vascular Cerebral/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...